Para que dos sistemas se comuniquen, se deben poder identificar y localizar entre sí. Aunque las direcciones de la Figura no son direcciones de
red reales, representan el concepto de agrupamiento de las direcciones.
Este utiliza A o B para identificar la
red y la secuencia de números para identificar el host individual.
Un computador puede estar conectado a más de una red. En este caso, se le
debe asignar al sistema más de una dirección. Cada dirección identificará la conexión del computador a una red diferente. No se suele
decir que un dispositivo tiene una dirección sino que cada uno de los puntos de conexión (o interfaces) de dicho dispositivo tiene una dirección en una red. Esto permite que otros computadores localicen el dispositivo en una determinada red.
La combinación de letras (dirección de red) y el número (dirección del host) crean una dirección única para cada dispositivo conectado a la red. Cada computador conectado a una red
TCP/IP debe recibir un identificador exclusivo o una dirección
IP. Esta dirección, que opera en la Capa 3, permite que un computador localice otro computador en la red.
Todos los computadores también cuentan con una dirección
física exclusiva, conocida como dirección
MAC. Estas son asignadas por el fabricante de la tarjeta de interfaz de la red. Las direcciones MAC operan en la Capa 2 del
modelo OSI.
Una dirección IP es una secuencia de unos y ceros de 32 bits. La Figura muestra un número de 32 bits de muestra.
Para que el uso de la dirección IP sea más sencillo, en general, la dirección aparece escrita en forma de cuatro números decimales separados por puntos. Por ejemplo, la dirección IP de un computador es 192.168.1.2. Otro computador podría tener la dirección 128.10.2.1. Esta forma de
escribir una dirección se conoce como formato decimal punteado.
En esta notación, cada dirección IP se escribe en cuatro partes separadas por puntos. Cada
parte de la dirección se conoce como octeto porque se compone de ocho dígitos binarios.
Por ejemplo, la dirección IP 192.168.1.8 sería 11000000.10101000.00000001.00001000 en una notación binaria. La notación decimal punteada es un método más sencillo de comprender que el método binario de unos y ceros.
Esta notación decimal punteada también evita que se produzca una gran cantidad de errores por transposición, que sí se produciría si sólo se utilizaran números binarios. El uso de decimales separados por puntos permite una mejor comprensión de los patrones numéricos.
Tanto los números binarios como los decimales de la Figura representan a los mismos valores, pero resulta más sencillo apreciar la notación decimal punteada.
Este es uno de los problemas frecuentes que se encuentran al
trabajar directamente con números binarios. Las largas cadenas de unos y ceros que se repiten hacen que sea más probable que se produzcan errores de transposición y omisión.
Resulta más sencillo
observar la relación entre los números 192.168.1.8 y 192.168.1.9, mientras que 11000000.10101000.00000001.00001000 y
11000000.10101000.00000001.00001001 no son fáciles de
reconocer. Al observar los binarios, resulta casi imposible apreciar que son números consecutivos.
Un
Router envía los paquetes desde la red origen a la red destino utilizando el protocolo IP. Los paquetes deben incluir un identificador tanto para la red origen como para la red destino.
Utilizando la dirección IP de una red destino, un Router puede enviar un
paquete a la red correcta. Cuando un paquete llega a un Router conectado a la red destino, este utiliza la dirección IP para localizar el computador en particular conectado a la red.
Este
sistema funciona de la misma forma que un sistema nacional de
correo. Cuando se envía una carta, primero debe enviarse a la oficina de correos de la ciudad destino, utilizando el código postal. Dicha
oficina debe entonces localizar el destino final en la misma ciudad utilizando el domicilio. Es un proceso de dos pasos.
De igual manera, cada dirección IP consta de dos partes. Una parte identifica la red donde se conecta el sistema y la segunda identifica el sistema en particular de esa red.
Como muestra la Figura, cada octeto varía de 0 a 255. Cada uno de los octetos se divide en 256 subgrupos y éstos, a su vez, se dividen en otros 256 subgrupos con 256 direcciones cada uno. Al referirse a una dirección de
grupo inmediatamente arriba de un grupo en la jerarquía, se puede hacer referencia a todos los
grupos que se ramifican a partir de dicha dirección como si fueran una
sola unidad.
Este tipo de dirección recibe el nombre de dirección jerárquica porque contiene diferentes niveles. Una dirección IP combina estos dos identificadores en un solo número. Este número debe ser un número exclusivo, porque las direcciones repetidas harían imposible el enrutamiento.
La primera parte identifica la dirección de la red del sistema. La segunda parte, la parte del host, identifica qué
máquina en particular de la red.
Las direcciones IP se dividen en
clases para definir las
redes de tamaño pequeño, mediano y grande. Las direcciones
Clase A se asignan a las
redes de mayor tamaño. Las direcciones
Clase B se utilizan para las redes de tamaño medio y las de Clase C para redes pequeñas.
El primer
paso para determinar qué parte de la dirección identifica la red y qué parte identifica el host es identificar la clase de dirección IP.
DIRECCIONES IP CLASE A, B, C, D, Y E
Para adaptarse a redes de distintos tamaños y para ayudar a clasificarlas, las direcciones IP se dividen en grupos llamados clases.
Esto se conoce como direccionamiento classful. Cada dirección IP completa de 32 bits se divide en la parte de la red y parte del host.
Un bit o una secuencia de bits al inicio de cada dirección determinan su clase. Son cinco las clases de direcciones IP como muestra la Figura
La dirección Clase A se diseñó para admitir redes de tamaño extremadamente grande, de más de 16 millones de direcciones de host disponibles.
Las direcciones IP Clase A utilizan sólo el primer octeto para indicar la dirección de la red. Los tres octetos restantes son para las direcciones host.
El primer bit de la dirección Clase A siempre es 0. Con dicho primer bit, que es un 0, el menor número que se puede representar es 00000000, 0 decimal.
El valor más
alto que se puede representar es 01111111, 127 decimal. Estos números 0 y 127 quedan reservados y no se pueden utilizar como direcciones de red. Cualquier dirección que comience con un
valor entre 1 y 126 en el primer octeto es una dirección Clase A.
La red 127.0.0.0 se
reserva para las pruebas de loopback. Los Routers o las máquinas locales pueden utilizar esta dirección para enviar paquetes nuevamente
hacia ellos mismos. Por lo tanto, no se puede asignar este número a una red.
La dirección Clase B se diseñó para cumplir las necesidades de redes de tamaño moderado a grande. Una dirección IP Clase B utiliza los primeros dos de los cuatro octetos para indicar la dirección de la red. Los dos octetos restantes especifican las direcciones del host.
Los primeros dos bits del primer octeto de la dirección Clase B siempre son 10. Los seis bits restantes pueden poblarse con unos o ceros. Por lo tanto, el menor número que puede representarse en una dirección Clase B es 10000000, 128 decimal. El número más alto que puede representarse es 10111111, 191 decimal. Cualquier dirección que comience con un valor entre 128 y 191 en el primer octeto es una dirección Clase B.
El espacio de direccionamiento Clase C es el que se utiliza más frecuentemente en las clases de direcciones originales. Este espacio de direccionamiento tiene el propósito de admitir redes pequeñas con un máximo de 254 hosts.
Una dirección Clase C comienza con el binario 110. Por lo tanto, el menor número que puede representarse es 11000000, 192 decimal. El número más alto que puede representarse es 11011111, 223 decimal. Si una dirección contiene un número entre 192 y 223 en el primer octeto, es una dirección de Clase C.
La dirección Clase D se creó para permitir multicast en una dirección IP. Una dirección multicast es una dirección exclusiva de red que dirige los paquetes con esa dirección destino hacia grupos predefinidos de direcciones IP. Por lo tanto, una sola estación puede transmitir de forma simultánea una sola corriente de datos a múltiples receptores.
El espacio de direccionamiento Clase D, en forma similar a otros espacios de direccionamiento, se encuentra limitado matemáticamente. Los primeros cuatro bits de una dirección Clase D deben ser 1110. Por lo tanto, el primer rango de octeto para las direcciones Clase D es 11100000 a 11101111, o 224 a 239. Una dirección IP que comienza con un valor entre 224 y 239 en el primer octeto es una dirección Clase D.
Se ha definido una dirección Clase E. Sin embargo, la Fuerza de tareas de ingeniería de Internet (IETF) ha reservado estas direcciones para su propia investigación. Por lo tanto, no se han emitido direcciones Clase E para ser utilizadas en
Internet. Los primeros cuatro bits de una dirección Clase E siempre son 1s. Por lo tanto, el rango del primer octeto para las direcciones Clase E es 11110000 a 11111111, o 240 a 255.
INTRODUCCIÓN A LA DIVISIÓN EN SUBREDES
La división en subredes es otro método para
administrar las direcciones IP. Este método, que consiste en dividir las clases de direcciones de red completas en partes de menor tamaño, ha evitado el completo agotamiento de las direcciones IP.
Resulta imposible
hablar sobre el TCP/IP sin mencionar la división en subredes. Como administrador de sistemas, es importante comprender que la división en subredes constituye un medio para dividir e identificar las redes individuales en toda la
LAN. No siempre es necesario subdividir una red pequeña. Sin embargo, en el caso de redes grandes a muy grandes, la división en subredes es necesario.
Dividir una red en subredes significa utilizar una
máscara de subred para dividir la red y convertir una gran red en segmentos más pequeños, más eficientes y administrables o subredes. Un ejemplo sería el sistema telefónico de los EE.UU. que se divide en códigos de área, códigos de intercambio y números locales.
El
administrador del sistema debe resolver estos problemas al agregar y expandir la red. Es importante saber cuántas subredes o redes son necesarias y cuántos hosts se requerirán en cada red. Con la división en subredes, la red no está limitada a las máscaras de red por defecto Clase A, B o C y se da una mayor flexibilidad en el
diseño de la red.
Las direcciones de subredes incluyen la porción de red más el campo de subred y el campo de host. El campo de subred y el campo de host se crean a partir de la porción de host original de la red entera. La capacidad para decidir cómo se divide la porción de host original en los nuevos campos de subred y de host ofrece flexibilidad en el direccionamiento al administrador de red.
Para crear una dirección de subred, un administrador de red pide prestados bits del campo de host y los designa como campo de subred.
El número mínimo de bits que se puede pedir es dos. Al crear una subred, donde se solicita un sólo bit, el número de la red suele ser red .0. El número de broadcast entonces sería la red .255. El número máximo de bits que se puede pedir prestado puede ser cualquier número que deje por lo menos 2 bits restantes para el número de host.
CÓMO OBTENER UNA DIRECCIÓN IP?
Un host de red necesita obtener una dirección exclusiva a nivel global para poder funcionar en Internet. La dirección MAC o física que posee el host sólo tiene alcance local, para identificar el host dentro de la red del área local. Como es una dirección de Capa 2, el Router no la utiliza para realizar transmisiones fuera de la LAN.
Las direcciones IP son las direcciones que más frecuentemente se utilizan en las
comunicaciones en la Internet. Este protocolo es un esquema de direccionamiento jerárquico que permite que las direcciones individuales se asocien en forma conjunta y sean tratadas como grupos. Estos grupos de direcciones posibilitan una eficiente
transferencia de datos a través de la Internet.
Los administradores de redes utilizan dos métodos para asignar las direcciones IP. Estos métodos son el estático y el dinámico.
Más adelante, en esta lección, se tratará el direccionamiento estático y las tres variantes del direccionamiento dinámico. Independientemente del esquema de direccionamiento elegido, no es posible tener dos interfaces con la misma dirección IP. Dos hosts con la misma dirección IP pueden generar conflictos que hacen que ambos no puedan operar correctamente. Como muestra la Figura, los hosts tienen una dirección física ya que cuentan con una tarjeta de interfaz de red que les permite conectarse al medio
físico.